Expander Graphs Exercise Sheet 3

Question 1. By choosing an appropriate $t = \Theta(\log n)$, $m = \operatorname{poly}(n)$ and $\epsilon = \Theta(1)$, show that the algorithm B' described the notes demonstrates a reduction of the problem in Theorem 3.13 to the problem in Theorem 3.13.

Question 2. Given a matrix A with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ show that the *Rayleigh quotient* of any vector \boldsymbol{x} satisfies

$$\frac{\boldsymbol{x} A \boldsymbol{x}^T}{\boldsymbol{x} \boldsymbol{x}^T} \in [\lambda_n, \lambda_1].$$

Show that for every graph G the Laplacian L(G) is positive semi-definite. and satisfies:

- $L = L_G = dI A(G);$
- The spectrum of L is in [0, 2d].
- The smallest eigenvalue of L is zero.
- The spectral gap of G is equal to the smallest positive eigenvalue of L.

Question 3 (Matrix-tree theorem). Let E_i be a matrix such that $E_{i,i} = 1$ and $E_{j,k} = 0$ otherwise. Let A be an abitrary matrix and let A[i] be the matrix obtained by deleting the *i*th row and column of A. Show that $\det(A + E_i) = \det(A) + \det(A[i])$.

Show that the number of spanning trees of a graph G is given by det(L(G)[i]) for any i.

(* Conclude that the number of spanning trees of G is given by $\frac{1}{n} \prod_{i=1}^{n-1} \lambda_i$, where λ_i are the eigenvalues of L(G).)

Question 4. Let G be an (n, d, α) -graph and let $\rho > 0$. Show that for every subset $S \subseteq V(G)$ of size $|S| \leq \rho n$

$$|\Gamma(S)| \ge \frac{1}{\rho(1-\alpha^2) + \alpha^2} |S|,$$

where $\Gamma(S)$ is the inclusive neighbourhood of S.

(Hint : Consider $||\hat{A}\mathbf{1}_S||_2^2$)

Question 5. Let $d \ge 3$ and let $\delta > 0$. Show that there exists an $\epsilon > 0$ such that for almost every (n, d)-graph G, every subset $S \subseteq V(G)$ with $|S| \le \epsilon$ satisfies

$$\Gamma(S)| \ge d - 1 - \delta|S|.$$

(Hint: This can be obtained from the proof of Theorem 4.7. In particular no more probabilistic statements need proving)