Expander Graphs

Exercise Sheet 3

Question 1. By choosing an appropriate $t=\Theta(\log n), m=\operatorname{poly}(n)$ and $\epsilon=\Theta(1)$, show that the algorithm B^{\prime} described the notes demonstrates a reduction of the problem in Theorem 3.13 to the problem in Theorem 3.13.

Question 2. Given a matrix A with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ show that the Rayleigh quotient of any vector \boldsymbol{x} satisfies

$$
\frac{\boldsymbol{x} A \boldsymbol{x}^{T}}{\boldsymbol{x} \boldsymbol{x}^{T}} \in\left[\lambda_{n}, \lambda_{1}\right] .
$$

Show that for every graph G the Laplacian $L(G)$ is positive semi-definite. and satisfies:

- $L=L_{G}=d I-A(G)$;
- The spectrum of L is in $[0,2 d]$.
- The smallest eigenvalue of L is zero.
- The spectral gap of G is equal to the smallest positive eigenvalue of L.

Question 3 (Matrix-tree theorem). Let E_{i} be a matrix such that $E_{i, i}=1$ and $E_{j, k}=0$ otherwise. Let A be an abitrary matrix and let $A[i]$ be the matrix obtained by deleting the i th row and column of A. Show that $\operatorname{det}\left(A+E_{i}\right)=\operatorname{det}(A)+\operatorname{det}(A[i])$.

Show that the number of spanning trees of a graph G is given by $\operatorname{det}(L(G)[i])$ for any i.
(* Conclude that the number of spanning trees of G is given by $\frac{1}{n} \prod_{i=1}^{n-1} \lambda_{i}$, where λ_{i} are the eigenvalues of $L(G)$.)

Question 4. Let G be an (n, d, α)-graph and let $\rho>0$. Show that for every subset $S \subseteq V(G)$ of size $|S| \leq \rho n$

$$
|\Gamma(S)| \geq \frac{1}{\rho\left(1-\alpha^{2}\right)+\alpha^{2}}|S|
$$

where $\Gamma(S)$ is the inclusive neighbourhood of S.
(Hint: Consider $\left\|\hat{A} \mathbf{1}_{S}\right\|_{2}^{2}$)

Question 5. Let $d \geq 3$ and let $\delta>0$. Show that there exists an $\epsilon>0$ such that for almost every (n, d)-graph G, every subset $S \subseteq V(G)$ with $|S| \leq \epsilon$ satisfies

$$
|\Gamma(S)| \geq d-1-\delta|S|
$$

(Hint: This can be obtained from the proof of Theorem 4.7. In particular no more probabilistic statements need proving)

